Normal view MARC view ISBD view

Swell and Compressibility of GGBS–Clay Mixes in Lumps and Powders : Effect of 4% Lime

By: Phanikumar, B. R.
Contributor(s): Nagaraju, T. V.
Publisher: New York Springer 2019Edition: Vol. 49(02), April.Description: 161-169p.Subject(s): Civil EngineeringOnline resources: Click here In: Indian geotechnical journalSummary: Chemical stabilization is one of the most successful among the techniques devised for reducing the volumetric changes of expansive soils. Lime and cement, fly ash and pond ash, calcium chloride and calcium silicate are some of the additives used for stabilizing expansive soils. This paper presents the influence of ground granulated blast furnace slag (GGBS) on swell-compressibility characteristics of a remoulded expansive clay passing 4.75 mm sieve. FSI, rate and amount of heave, swell potential (S%), swelling pressure (ps), coefficient of compressibility (av), compression index (Cc) and linear shrinkage (LS) of GGBS–clay blends were studied varying the GGBS content such as 0, 4, 8 and 12% by dry weight of the soil. It was observed that swellability and compressibility of the expansive clay decreased with increasing GGBS content. At 12% GGBS, the amount of heave was the lowest. The paper compares the effect of 12% GGBS on clay lumps passing 4.75 mm sieve and clay powder passing 425 µm sieve. While swell potential (S%) was found to be more for clay powder than for clay lumps at 12% GGBS, swelling pressure was higher for clay lumps than for clay powder. The paper also presents FSI data on clay–lime blends with varying lime content. As 4% lime resulted in the highest reduction of FSI, two more series of swell-consolidation tests and FSI tests were conducted on GGBS–clay blends to which 4% lime was added. Interesting phenomena were observed which the paper discusses in detail.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology (PG)
Archieval Section
Not for loan 2018534
Total holds: 0

Chemical stabilization is one of the most successful among the techniques devised for reducing the volumetric changes of expansive soils. Lime and cement, fly ash and pond ash, calcium chloride and calcium silicate are some of the additives used for stabilizing expansive soils. This paper presents the influence of ground granulated blast furnace slag (GGBS) on swell-compressibility characteristics of a remoulded expansive clay passing 4.75 mm sieve. FSI, rate and amount of heave, swell potential (S%), swelling pressure (ps), coefficient of compressibility (av), compression index (Cc) and linear shrinkage (LS) of GGBS–clay blends were studied varying the GGBS content such as 0, 4, 8 and 12% by dry weight of the soil. It was observed that swellability and compressibility of the expansive clay decreased with increasing GGBS content. At 12% GGBS, the amount of heave was the lowest. The paper compares the effect of 12% GGBS on clay lumps passing 4.75 mm sieve and clay powder passing 425 µm sieve. While swell potential (S%) was found to be more for clay powder than for clay lumps at 12% GGBS, swelling pressure was higher for clay lumps than for clay powder. The paper also presents FSI data on clay–lime blends with varying lime content. As 4% lime resulted in the highest reduction of FSI, two more series of swell-consolidation tests and FSI tests were conducted on GGBS–clay blends to which 4% lime was added. Interesting phenomena were observed which the paper discusses in detail.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha